Genetics problem set 3. Solution

1.

- A) The appearance of 4 different colors and a classic dihybrid ratio of offspring make me suspect 2 genes control color in these bean plants.
- B) Perhaps 2 genes control pigment: The genotype A__ gives a yellow pigment: The genotype aa gives no yellow pigment The genotype B__ gives blue pigment: The genotype bb gives no blue pigment

If both yellow and blue are produced in the same bean plant, the beans appear green.

In the theoretical dihybrid cross:

AaBb X AaBb (both parents would appear green)

Theoretical offspring ratio:

9: A_B_ (green due to yellow and blue pigment production)

3: A_bb (Yellow pigment only)

3: aaB_ (blue pigment only)

1: aabb (white)—due to lack of either yellow or blue pigment

- C) If the strains were true breeding----Yellow X Blue (AAbb X aaBB)
- 2. The ratio is similar to that seen in the example of lethal alleles.

T^L is dominant over T^s. When long tailed mice are bred, the offspring always include some short tailed mice, so the long tailed mice are not homozygous/true-breeding.

It appears that the T^L allele is a recessive lethal.

Long tailed mice are always heterozygotes.

TLTS X TLTS Should give 1: TLTL: 2 TLTS: 1 TsTS

But $T^L\,T^L\,$ dies leaving 2 long tailed mice : 1 short tailed mouse for a theoretical ratio

Harb Aarb Brown x Brown

... Drown : Lhek: White

indicates 2 genes and recessive epistancis

... A- -> production of

piquent

... au -> no figurent (whide)

... Bb > pigment converted to blown.

9 ... A-B- - brown 3 ... A_bb - black 3... aa B- White

** Parents of litter of brown mice found in Moved 2 3

** AABB X ambo (White)

AAbb x as PB (Black. (White)

4. The alleles for color of scales seem to show co-dominance. Fish showing both colors of scales are assumed to be heterozygous and should produce a ratio of offspring. 1 all silver: 2 silver and gold: 1 all gold

- 5.
- Only son 1 with type B and daughter 2 with type A could be the biological children of this couple.
- Daughter 1 could be the father's child from a previous marriage. The mother of Daughter 2 would have had to have A, B, or AB blood type.
- Son 2 could be a child from the mother's previous marriage. The father of Son 2 could have been type A or B (if he is heterozygous), or O blood type.

White x White FINE X PINE resembles Complementary que action. Pink 2 gienes - A ? B - one dom allele of each result = in DinL AaBb = Pink bunnies parents were AAbb x au EB (White) (white) USA (2n212 Ma Bb (Pink) 9 A - B - Finh 3 A- 66 3 aa B-

1 aabb.

* Since the baby's father is not hemoficilize the baby has received an X chrom with the let allele from him. The baby could have received a mutant or a W allele from hor mother a The baby will NOT have hemophelia but could be a carrier. Future or children have sools chance of having hemophelia.

